CORRELATION OF IN VIVO IMAGING with PATHOLOGY IN RODENT MODELS

Kathy Gabrielson
Department of Molecular and Comparative Pathobiology
Johns Hopkins Medical Institutions
Baltimore, Maryland
kgabriel@jhmi.edu

Goals for this lecture

1. Introduce methodology for in vivo imaging in rodents
2. Compare in vivo imaging to gross and histopathology
3. Provide examples of applications

Imaging modalities -Examples

- SPECT: Single photon emission computed tomography
- US: Ultrasound
- MR: Magnetic Resonance

Cardiac examples

- Myocardial hypertrophy
- Myocardial infarction
- Marfan's disease
- Atherosclerosis
- Cancer therapy-induced cardiac injury

CV phenotype-Hypertrophy

- Increased heart/body weight
- Increased heart weight/tibia length
- Increased cardiac myocyte cross section
- Biochemical markers- ANP, BNP, β myosin heavy chain
CV Phenotype: **Is the heart enlarged?**

- No **Cardiomegaly**
 - Yes **Infiltration**
 - No **Hypertrophy**
 - Yes **Eutrophy**
 - No **Adaptive**
 - Yes **Maladaptive**
 - No **Is the cardiomyocyte contractility normal?**
 - Yes
 - No

Ultrasound

How can we measure hypertrophy in vivo?

What can we do with minimal budgets?

Rat heart 2D

Pharmacology experiments

• Cardiomyocyte hypertrophy
• Karyomegaly
• Cell loss
• Fibrosis

Correlation of histopathology to \textit{in vivo} imaging

\textbf{Hypertrophy}
- Gross (ultrasound)
- Left ventricle free wall and septum measures thicker than control by ultrasound

\textbf{Hypertrophy}
- Histopathology
- Enlarged myofibers can be measured microscopically

Surgical manipulations to induce phenotypes- Myocardial infarction

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{surgicalManipulations.png}
\caption{Surgical ligature of the left anterior descending artery (ventricles, infarcted).}
\end{figure}
Correlation of histopathology to in vivo imaging

Myocardial Infarction
- Gross (ultrasound)
- LVFW or septum m-mode image has a flat wall showing no movement versus the unaffected normal wall showing normal contraction and relaxation.
- Damaged wall may measure thinner at infarct

Myocardial Infarction
- Histopathology
- Areas of cardiomyocyte loss and replacement fibrosis with inflammation

Vevo 770™ High-Resolution In Vivo Imaging System

Developed for Rodents
30 micron resolution

Phenotyping application:
Image valve and aorta in Mouse model for Marfan's disease

D

<table>
<thead>
<tr>
<th>Phenotype</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fbn1+/-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fbn1-/-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Losartan rescues the phenotype
Marfan's mouse model

Wild-type | C1039G/- (Placebo) | C1039G/+ (Losartan)
C1039G/- (Losartan) | C1039G/+ (Losartan) | C1039G/+ (Losartan)
Postnatal losartan: Aortic root growth

![Graph showing postnatal losartan effects on aortic root growth](image)

- Wild-type: n = 11
- Placebo: n = 10
- Propranolol: n = 7
- Losartan: n = 5

<table>
<thead>
<tr>
<th>Growth (mm/6 months)</th>
<th>Wild-type</th>
<th>Placebo</th>
<th>Propranolol</th>
<th>Losartan</th>
</tr>
</thead>
<tbody>
<tr>
<td>p < 0.0001</td>
<td>p = 0.001</td>
<td>p = 0.02</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Losartan rescues aortic wall architecture and thickness

![Diagram showing aortic wall architecture](image)

Phenotyping ApoE/- mice

- Genetically modified to lack Apolipoprotein-E which is important in cholesterol metabolism
- Fed high fat diet
- Demonstrate similar lesion progression to humans

![Mouse image](image)

Atherosclerosis Plaque Build-up in Common Carotid Arteries in Adult Mouse - ultrasound

![Ultrasound images of atherosclerotic plaque](image)

- Normal
- Plaque
- 2-D

Image sequence courtesy of Gan et al., University of Gothenburg, Sweden, 2004

Atherosclerotic Lesion

![Diagram of atherosclerotic lesion](image)

- Dysplasia
- Fibrotic area
- Inflammation
- Tissue Build-up
- Lipid Core

Ultrasound-Visualsonics- atherosclerotic plaque

![Ultrasound images of atherosclerotic plaque](image)
Aorta- atherosclerosis in apolipoprotein E-deficient mice (Apoe/-/-)

Correlation of histopathology to \textit{in vivo} imaging

\textbf{Aortic Lesions}
- Gross (ultrasound)
- Dilated aorta with roughened irregular outline of the intima due to Atherosclerosis by ApoE KO
- SPECT- cell death (next example)
- Histopathology
- Thickened wall and accumulation of lipid, mononuclear cells and mineral, disrupting the intima and media
- TUNEL positive

\textbf{SPECT/CT}

Methods to increase in vivo contrast

CT scan of a mouse- a vascular contrast agent was injected in the tail vein to heighten the contrast of the blood vessels

Fenestra=contrast agent

Tc^{99m}-HYNIC-Annexin-V and Apoptosis

\begin{itemize}
 \item Live
 \item Early Apoptotic
 \item Plasma membrane
 \item Phosphatidyl serine
 \item Annexin V- TdT
\end{itemize}
Background

- ApoE^{-/-} mice on high fat diets are treated with Tc^{99m} labeled Annexin V and imaged (SPECT)
- Hot spots are hypothesized to be vulnerable atherosclerotic plaques
- Autoradiography is performed post-mortem on the dissected aortas
- Not all atherosclerotic plaques appear hot on the autoradiographs…

Methods

- After imaging, animals were sacrificed and vessels were fixed by perfusion with 10% buffered formalin
- Dissected aortas were photographed, dyed, sectioned according to “hot” or “cold” plaques, imbedded in paraffin, and placed on slides
- Cell death was visualized using In Situ Cell Death Detection Kit, Fluorescein, from Roche Applied Science
- Slides were analyzed with the fluorescence microscope
Toxicity induced phenotypes

- Doxorubicin
- Used for 30 years to treat cancer
- Major side effect - cardiac toxicity

Chronic study - Progressive Cardiomyopathy in Doxorubicin treated mouse

M-mode of the left ventricle

Cytoplasmic vacuolation in cardiomyocytes

- Myocardial cytoplasmic vacuolation
- Doxorubicin induces dilation of rough endoplasmic reticulum and T-tubules (EM)

Nuclear imaging of cell death

SPECT-Tc 99mTc Annexin-v labeling

Phenotyping application: in an acute study, image heart and assess function in +/- and +/- cbr mice
• MR: Magnetic Resonance

Image multiple mice simultaneously
N Bock, N Konyer and R Henkelman
An array of four birdcage coils in hexagonal shields for imaging at 1.5 T.

Images of 4 mice

Two types of small animal MR imaging

- Fixed specimens
 - Whole animals-adults, embryos
 - Isolated tissues
- Live animals
 - Monitor a disease process by serial imaging

Some potential applications

- Perfuse-fixed specimens
 - Phenotyping GEM adults or embryos
 - Identifying toxicities – Acetaminophen-hepatic necrosis or carbonyl sulfide neurotoxicity in rats
 - Rat teratology
 - Identifying carcinogenesis liver and lung
- Live animals
 - Monitor a disease process by serial imaging

Visualization of Rat Brain Lesions Caused by Demoic Acid

M. E. Lester, D.S. et al., Toxicologic Pathology 28(1):100-104 (2000)
(Lesion is located in the pyriform and endopyriform cortex)
Body: 695.6
GI tract volume: 442.1
Liver volume: 427.9
Brain volume: 203.8
Pancreas volume: 146.6
Kidney volume: 123.0
Lung volume: 106.2
Stomach volume: 104.4
Colon volume: 91.1
Spleen volume: 79.0
Spleen volume: 79.0
Nasal turbinate: 51.3
Aorta volume: 54.1
Semi-mature testes: 53.3
Mesenteric node: 41.2
Mature testes: 41.2
Hyalinizing gland: 41.2
Nasal turbinates: 49.3
Spleen volume: 26.8
Adipose volume: 24.4
Femur volume: 16.0
Intestinal gland: 15.9
Peroxidase gland: 15.9
Femur volume: 9.4
Aorta volume: 7.3
Thymus volume: 6.6
Mesenteric node: 5.6
Bulbourethral gland: 4.4
Kidney volume: 2.9
Adrenal volume: 1.8
Ureter volume: 1.6
Bladder volume: 0.4
Thymus gland: 0.4
Adipose volume: 0.4
Lung volume: 0.2
Thyroid gland: 0.4
Iliac node volume: 0.2

All units in mm3

Rat Teratology studies
Non-destructive
40 organs visualized intact
Organ substructures
Inherently 3-dimensional
Linear
Volumetric
Measurements
Digital images allow for
Consultation
Combined with other
modalities

Lung tumors
Liver hyperplastic foci
Carbonyl Sulfide (500 ppm) 2 week exposure
Acknowledgements

Dr. Marty Pomper, JHU Radiology
Dr. Benjamin Tsui, JHU Radiology
Dr. Hal Dietz, JHU, Pediatrics
Dr. David Kass, JHU Cardiology
Dr. Eduardo Marban, JHU Cardiology
Dr. David Huso, JHU, MCP
Dr. Tim Cooper, JHU, MCP
Dr. Cory Brayton, JHU, MCP, Phenotyping Core
Dr. Rob Maronpot, NIEHS, RTP, NC
VisualSonics
Dr. Matt Smith
Dr. Rob Sandler
Greta Smok
Allison Tsao
Djahida Bedja

Additional References

- Badea CT, Tox Path (2006) 34:111-117

Websites:
- Eumorphia
 http://www.eumorphia.org/EMPriSS/servlet/EMPriSS.Frameset
- MRC Mutagenesis Program
 http://www.mgu.har.mrc.ac.uk/facilities/mutagenesis/mutabase/
- mouse.wustl.edu/index.htm

Rat heart 2D